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Abstract

In this project, we implemented Wasserstein in Generative Adversarial Network
(WGAN), as well as WGAN with gradient penalty (WGANGP). Wasserstein Gen-
erative Adversarial Networks (WGAN) was developed based on the Generative
Adversarial Networks (GAN), which is a powerful generative model but still suf-
fering from some defects. It modified the loss function of the original GAN, which
made the training more stable and solved the mode collapse problem of the orig-
inal GAN. The main breaking point of this network is using the Wasserstein Dis-
tance instead of KL and JS divergence. However, the weight clipping in WGAN
could still cause gradient vanishing or exploding. Therefore, the gradient penalty
was introduced to settle it. We regard WGAN as a landmark in the history of
GAN, as it makes GAN’s loss function much more interpretable. We carried out
4 parts of experiments: quantitatively evaluate the generation quality with Fréchet
Inception Distance (FID) score, testing on training stability, evaluating genera-
tion diversity, and testing the performance of gradient penalty. The experiments
were carried out on three datasets: LSUN Bedroom, CelebA, and Animefaces-
Danbooru, where LSUN bedroom is the dataset used in the WGAN paper. Our
experiment results verified the claim in WGAN and WGANGP paper. However,
with testing the FID score, we thought the generation quality was something that
can be improved further.
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1 Introduction

Generative model is an important aspect of machine learning because it aims to solve two significant
problems: data generalization and data efficiency[Kingma and Dhariwal, P0T8, Kingma and Welling,
7073]. Among different generative models, generative adversarial network (GAN) has been a pop-
ular research direction since it was first published in 2014[Goadtellow ef all, Z0T4]. GAN models
are currently widely used in image and audio synthesizing, text generation and image synthesiz-
ing[Kingma and Dhariwal, POT8, Kong et all, 2020, Zhu ef all, PUT7]. The separable structure of
GAN makes it one of the lightweight models, ensuring its fast synthesizing speed.

However, when GAN was first raised, its training process was unstable due to its loss func-
tion[Arjovsky et all, 2017, Goodfellow ef all, 2(0T4]. Two main problems exist: (1) The loss function
cannot correctly indicate its training process and is very unstable (2) The variety of generation
objects are not guaranteed, which is also called mode collapse[Arjovsky et all, 21T, Goodfellow
ef-all, P0OT4]. Later, these two problems were eased by Wasserstein GAN (WGAN) to a great ex-
tent. WGAN has thus become a base model for many later worksCao_ef-all [20T9], [Adler and TunZ
[DOTR].

In this project, we will first explain in detail why Wasserstein GAN achieves improvements from
the mathematical perspective. Then we will implement the Wasserstein GAN model on different
datasets. To verify the effectiveness of our implementation, we will test our model on LSUN-
Bedrooms dataset[[Yu_ef all, POTS], which is the dataset used in the original paper. We will use
LSUN Bedroom to justify some claims in the WGAN paper. To demonstrate our understanding,
we will test our model on CelebA and Animefaces-Danbooru datasets, which is not included in
the original paper[Viufs, 2021, Shuad, POTS]. These datasets feature capturing facial features and
include a large number of elements, thus it’s sufficient to manifest the advantages of Wasserstein
GAN model. Both of the test baselines will be deep convolutional generative adversarial network
(DCGAN), which is coherent with the original paper[Arjovsky et all, ZOT7].

The project is meaningful, as Wasserstein GAN is one of the landmarks that improves GAN inter-
pretability. Though GAN is a well-elaborated model having marvelous performance, the mathemat-
ics behind it is hard to interpret[Goodfellow ef all, P0I4]. Unlike other generative models, GAN
does not find a specific function that maps from a random variable to a given distribution[Kingma
and Dhariwal, ZOT8], making it hard to rigorously prove why it works. Therefore, deriving a math-
ematically interpretable loss function can give a clearer picture of GAN model. It can also be a
foundation for the following research.

Meanwhile, our project enriches the experiment of the original Wasserstein GAN paper by testing
the model on CelebA and Animefaces-Danbooru datasets. Besides justifying the claims in WGAN
paper, we carried out two additional experiments. we applied Fréchet Inception Distance (FID) score
as a metric to evaluate the generation quality quantitatively, which was not provided by the original
paper [Heusel'ef all, POT7]. FID is one of the most widely used evaluation metrics on GANs, and
we believe that a quantitative metric can help understand performance differences between models.
During our experiments, we also found that WGAN model failed on CelebA dataset. We solved the
problem by applying the gradient penalty to the loss function.

2 Related Works

2.1 Generative Model

Generative model aims to find the conditional probability of a known distribution X from a random
distribution Z, P(X|Z = z)[lebard, P004]. In the view of maximum likelihood, it can be expressed
as: Given a known distribution P,(x) of real data and a generated distribution Py(x;0) (Py(x;6)
also contains z), we’d like to find a optimal 6 that make the generated distribution be as close as
possible to the real distribution.

To transform the random latent variable 2 into generated distribution, we need to calculate the con-
ditional probability in the following equation:

Py(z;0) = /P(Z)Pg(x|z)dz ()



For simplicity, P, () will be used instead of Py(x;6) in the latter parts.

A challenge lies in that achieving an exact expression conditional probability needs a huge amount
of calculating, making it quite time-consuming.

2.2 Generative Adversarial Network

In 2014, the first generative adversarial network(GAN) model was raised[Goodfellow ef-all, DOT4].
To tackle the challenges of the generative model, GAN introduces a neural network discriminator to
evaluate the quality of generated samples besides the generator. The discriminator takes a sample
as input and outputs a value indicating whether it is fake or not. On one hand, the goal of the
discriminator is to classify real samples as real and generated samples as fake. On the other hand,
the goal of the generator is to deceive the discriminator i.e. trying to make generated samples
classified as real. The training objective function of the discriminator can be defined as follow:

L(d,g) = Eg~p, [logd(z)] + Eznp, [log(1 — d(2))] 2

where d is the discriminator, and P, is the distribution created by the generator. And the optimal
generator is to solve:

g* = arg min max L(d,9) 3)
9

In practice, generator and discriminator are alternately trained to obtain the best generator. Both
generator and discriminator apply neural networks with fully connected layers and activation layers.
Thus, the generator is solved by backpropagation of two neural networks, making a black box to
approach Py(z|z). Due to the great performance of neural networks in finding the global minimum,
GAN model can have high-quality generation. Meanwhile, as only the generator is needed in the
synthesizing stage, the synthesizing speed can be very fast by making a small generator and a large
discriminator to ensure its quality.

2.3 Deep convolutional Generative Adversarial Network

Deep convolutional generative adversarial network (DCGAN) is used as the baseline of our project.
It changed the fully connected layer in the simple GAN model generator into convolutional layers.
It enhances its performance on 2D image synthesizing. The structure of DCGAN is in Figure [
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Figure 1: The structure of DCGAN. conv in discriminator is a 2D convolutional layer, and FSC in
generator is 2D deconvolutional layer (which acts reversely as convolutional layer).



2.4 Kullback-Leibler and Jensen-Shannon Divergence

Kullback-Leibler divergence (KLD) is defined as:[Menéndez ef all, T997]

P
KL (Py||Py) = Eyp, log —Pl
2

Jensen-Shannon Divergence (JSD) is defined as:[Menéndez ef all, T997]

P1+P2> P1+P2)

2 2

1
JS(P1||P2)=2KL(P1|| 5

1
ik (P2||
Both of them are measurements of the similarity between P; and Ps.
We can change the loss function of GAN into this form:

) P, (x)
E;~p, log 5 [Pr(@) + Py(x)]

Py(z)
[Pr(z) + Py(w)]

+ Eznp, log 5 — 2log 2
2
Plugging in JSD, we have the simple GAN and DCGAN discriminator loss function as follow:
L(d,g,7) =2JS (P (x)||Py(x)) — 2log2

2.5 Fréchet Inception Distance

Fréchet Inception Distance (FID) is the evaluation metric we’ll be using to quantitatively measure
model performance. FID model sends both real images and generated images into a deep con-
volutional classifier, extracting and comparing their feature map (output of hidden layer with the
following equation):

FID = |12y — pio||? + tr (zg 3, -2 (zgzr)lﬂ)

where u is the expectation and ¥ is the covariance matrix.

3 Method

3.1 Problem of GAN Loss Function

For the loss function L (D, g,r), when P,(z) = 0,P.(z) # 0 or P,(z) # 0,P.(z) = 0,
L(D,g,r) = log2, which is a constant, causing the gradient to vanish, which means if P, and
P, have no intersection, the loss will be a constant. Meanwhile, as GAN usually models a low
dimension distribution (Gaussian variable) to a high dimension distribution (real images), it’s likely
that there’s no intersection between P, and FP,;. And it will make gradient vanish, causing an unsta-
ble training.

Meanwhile, when P — g — O and P — r — 1, Py(z) log ?’gg — 0, contributing little to the KLD
and thus the GAN loss function. But when P — g — 1 and P —r — 0, Py(x)log }13783 — 00,

contributes much more to the loss function. This means if the generator tries to create safe samples
that approaches the known distribution, it doesn’t matter if it creates fake samples. However, if it
tries to create samples that are not included in the known distribution, it will receive a severe penalty.
These two situations should be treated as the same, and it could lead to lack of generation diversity,
which is also called mode collapse problem

3.2 Wasserstein Loss

Wasserstein distance is defined as follow:

WP, Py) = inf B~y lllz—yll]

'YNH(Pran)



where II (P, P,) is the union distribution of P, and P,. This distance outperforms JSD, as it can
reveal the actual distance between P,. and P, even if there is no intersection.

However, inf, i(p,,p,) cannot be directly calculated. Thus, the author offered an alternative ex-
pression:[Arjovsky et all, ZOT7]

W (PP = — sup Euup,[f(2)] - Egor, [f(2)
K yf1.<x

where f is Lipschitz continuous, and K is the Lipschitz constant (for detailed proof, refer to the
WGAN paper[Arjovsky et all, ZOT7]).

As we are dealing with discrete values, the equation can be changed into

K-W (Pf’vpg) ~ w:|?ul,z|lX<KExNPT [fw(x)] - ]E-?CNPg [fw(x)]

To obtain the expression of f,,, we can apply the method of deep learning, where f is a learnable
parameter. It is exactly the discriminator in GAN models, and K - W (P,, P,) is the Wasserstein
loss. Thus, we can obtain the loss of WGAN discriminator:

Lwgan.a (Pr, Py, d) = Eyp, [d()] — Eznp, [d(7)]

For the generator loss, instead of the rigorous minimax game of the original gan, it’s simply defined
as part of reversed discriminator loss, which still applies the idea of the minimax game.

LWGAN:g (Pra d) = 7Em~Pr [d('ﬁ)]

The Wasserstein loss makes sense when P, (z) = 0 or P.(z) = 0, as neither the value of Py(z) = 0
nor P, (x) itself will contribute on the loss function, but their difference Py(x) — P, («) will make
the contribution. Therefore, it doesn’t matter if P,(z) = 0 or P.(z) = 0, and both the unstable
training and mode collapse problems settled.

Practically, WGAN made these modifications from DCGAN:

 Substituting original GAN loss with Wasserstein loss
* Remove the final activation layer with Tanh

* Limiting the norm of discriminator weight less than Lipschitz constant.

3.3 Wasserstein Generative Network with Gradient Penalty

To limit the norm of discriminator weight, the original WGAN applies weight clipping. However,
this can easily lead to gradient vanishing or explosion, as it just cut the weight at a certain line
with brute force, and this weight can easily make the discriminator undifferentiable and needs to be
carefully chosen. To solve this problem, a new method (WGANGP) is raised that instead of doing
clipping, a penalty term is added to the discriminator loss[Gulrajani et all, PZOT7]. Its objective is to
make the norm of discriminator output gradient close to 1, at which time the weight of discriminator
is Lipschitz continuous with constant 1 (proof is detailed in the original paper).

Lwgangp.d (Pr, Py, d) = Egnp, [d(2)] — Egnp, [d(z)] + AEsnp, P, [(HVID(ZC)”Q -1)?

A is set 10 in the original paper. For the gradient penalty, samples from both generated distribution
and known distribution are calculated separately. We applied this method to Animefaces-Danbooru
and CelebA datasets to test generation quality.



4 [Experiments

Our experiments are divided into four parts: generation quality, a test of training stability, a test of
mode collapse problem, and performance of gradient penalty. The structure of convolutional layers
is the same in all three models, and all of the models share the same generator. For WGAN model,
the clipping range of discriminator weight is set [-0.01, 0.01].

4.1 Generation Quality

We tested the generation quality with three datasets: LSUN Bedroom, CelebA, and Animefaces-
Danbooru. LSUN bedroom is the dataset in the original WGAN paper, which is a collection of
natural images of indoor bedrooms. CelebA is a large human face dataset, and Animefaces-danbooru
is an Animefaces-danbooru face dataset[Viufs, PO, Shua, DOTS, Yi“ef all, POTS]. All images are
generated with 64*64 in size and 3 in channels. Generation quality is quantitatively calculated with
FID score, and results are in Table M. Our baseline model is DCGAN. Samples of CelebA and
Animefaces-Danbooru are in figure I - B(more samples are available in the following parts).All
samples are randomly chosen without selection to ensure authenticity. No data are provided for
WGAN on CelebA is due to the gradient vanishing, which will be discussed in Section 4.4.

FID Score LSUN Bedroom | CelebA | Animefaces-danbooru
DCGAN 31.2 46.5 433
WGAN 294 50.2
WGANGP 26.6 42.1 44.0
Ground Truth | 1.15 2.56 0.97

Table 1: FID Score of models
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Figure 2: DCGAN on CelebA. Figure 3: WGAN on CelebA.

Among the three models, WGANGP is slightly better than the other two models, but many of the
generated images are still far from reality.

4.2 Training Stability

The stability of training is demonstrated by the discriminator loss function. The dataset we use as
an example is LSUN Bedroom, which is the dataset in original WGAN paper[Arjovsky et all, 2OT7].
We think it can better justify the claim in the paper. See Figure [, B.

The loss function decent of WGAN is much more robust than that of DCGAN. Thus it’s less likely
for WGAN to have an overfitting problem. Meanwhile, it is much easier to find if the loss of WGAN
comes to a convergence, which is hard to tell from DCGAN loss. Therefore, we can conclude that
the loss of WGAN ensures a more stable training.
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Figure 7: DCGAN discriminator loss. Figure 8: WGAN discriminator loss.

4.3 Mode Collapse

The mode collapse problem of DCGAN can be easily found in the generated samples of LSUN
bedroom in Figure [0, where a lot of images look very similar to each other. While in bedrooms
generated by WGAN, the problem doesn’t exist. Therefore, we can say that the mode collapse
problem has been greatly eased by WGAN.

Figure 9: DCGAN on LSUN Bedroom. Figure 10: WGAN on LSUN Bedroom.



4.4 Performance of Gradient Penalty

As described in Section 3.3, an inappropriate clipping range can cause gradient vanishing and ex-
plosion. We tested WGAN with [-0.01, 0.01] as the clipping range on CelebA, whose loss had
converged but wasn’t able to generate satisfactory images. However, when we applied the gradient
penalty instead, the problem was solved. See Figure [, TA. Mode collapse problem of GAN also
exists in the other datasets, please refer to the samples above.

sl s,

Figure 11: DCGAN (without gradient Figure 12: DCGANGP (with gradient
penalty) on CelebA. penalty) on CelebA.

5 Conclusion

This is a meaningful project to hand-on implement the Wasserstein GAN model. We justified that
the model does make great improvements in solving the unstable training and mode collapse prob-
lem of the original GAN model because of its unique loss function. We not only tested it with
experiments but also learned the mathematical motivation behind the adjusting of the loss function.
And motivation is much more important when coming up with a new research idea. With rigorous
mathematical proof, we can know that we are on the right track. Meanwhile, when we are doing
experiments, we found that the WGAN model failed on CelebA dataset, which prompted us to find
the reason behind it, and we solved it by adding a gradient penalty term to the loss. We also learned
from this episode that when solving a problem, we should dig deep to find its derivation, which is
the clipping weights. Actually, it’s not illustrated in the WGAN paper, but can be only found in the
code. Carefully reading codes is also an important ability that we learned, as the author always puts
positive results and high-level motivation in the paper. But it may have defects, which can be only
found in the code and with experiments. Though the WGAN model takes a great stride in the inter-
pretability of GAN, it still cannot generate very high-resolution samples. Thus, we should say that
we have implemented a classic paper, but there are still many following up works for us to navigate
through. This is a paper with great motivation and significance, but it’s not the model with the best
performance. But we still regard this project as meaningful as we learned a lot about how to carry
out research other than just put previous works together and tune the parameters.

6 Work Distribution

Author 1: proposed the topic of the project, implemented the backbone code of WGAN and DC-
GAN, wrote the theoretical parts in the proposal and final report.

Author 2: Ran experiments on WGAN and DCGAN, found the clipping problem of WGAN, wrote
the experiment part in the final report.

Author 3: solved the clipping problem of WGAN by implementing gradient penalty. Ran experi-
ments on WGANGP, refined the format of the final report.
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7 Appendix

7.1 Random seed for reproduction

LSUN bedroom: 7840
Animefaces-danbooru: 5635
CelebA: 3303
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